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Least-squares refinement of atomic positions and anisotropic vibrations is discussed. An approxima- 
tion is described, for which most of the off-diagonal elements of the normal matrix need not be 
calculated, and an acceleration device is suggested. The effect of the matrix approximation upon 
standard-deviation estimates can be assessed, and similar considerations apply to standard devia- 
tions of combinations of parameters, calculated from the diagonal elements of the full variance 
matrix. Three tests of the acceleration device are described. 
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The 3-vector of integers (hi, h2, h8 or h, Ic, l) 
representing the order of diffraction. 
The observed value of the modulus of the 
structure factor for order h, on an arbi t rary  
scale, p(~) 
The Bragg angle for order h. e(i) 
The number of h for which [F0(h)] are Ap 
available. 
The calculated value of the structure factor Aq(i) 
for order h. 
The scale factor by which ]Fo(h)l must  be s(~) 
multiplied to place them on the same scale T 
as ]Fc(h)l.  
The number of independent atoms in the C 
unit  cell. 
The number of symmetry  equivalent posi- d 
tions in the unit  cell. 
The form factor of independent atom r for A 
order h. b(~) 
The 3-vector (xl, x2, x8 or x, y, z) giving the 
position of independent atom r on which D 
the symmetry  operations are taken to act. ~tl 
The 3-vector derived from Xr by symmetry  vj 
operation s. e~O 
Isotropic temperature factors applied equal- 1 
ly to all atoms. (5l 
The 3 by 3 symmetric matr ix  giving the 
anisotropic vibration of independent atom r. a(1) 
The 3 by 3 symmetric matr ix  derived from fro(l) 
Br by  symmet ry  operation s. 
A weight inversely proportioned to the u 
square of the uncer ta in ty  in [[Fo(h)[-  
(1//c)[Fc(h)l ] arising from experimental er- 
rors in IFo[ and defects of the model used 
to calculate [Fc[. 
The function Z w(h)([Fo(h)]-(1/k)]Fc(h)]) 2. 

h 

The function ~ w(h)(klFo(h)l- IFc(h)l) 2. 
h 

An index giving the parameter  number. 

A C 1 6 - - 2 2  

The i m of the 9 n +  1 independent param- 
eters of the set xl, . . . ,  xn, B1, . . . ,  Bn, k. 
A superscript giving the i teration number. 
The number of i terations carried out. 
The set of 9 n +  1 parameters  which mini- 
mises the function M. 
The set of parameters input  to i terat ion (i). 
The set of errors p _ p r o .  
The set of corrections to p(O) calculated 
from the full normal matrix.  
The set of corrections to p(~) calculated 
from the matr ix  approximation. 
A relaxation factor used in i teration (i). 
A superscript indicating matr ix  transposi- 
tion. 
The matr ix  of the observational equations 
for the p~. 
The right hand sides of these observational 
equations. 
The normal matr ix  corresponding to C. 
The right hand sides of the normal equa- 
tions at  i teration (i). 
An approximation to the mat r ix  A. 
The jta largest la tent  root of D-1A. 
The la tent  vector corresponding to ).~. 
The component of em in the direction of v~. 
A function of the parameters p~. 
The change in 1 resulting from parameter  
changes 5pi. 
The est imated s tandard deviation of 1. 
The s tandard deviation of 1 est imated from 
the approximate matr ix  D. 
The vector of coefficients defining the de- 
pendence of ~tl on the 5p~. 

2. Introduct ion 

There are a number of corrections which may  be 
needed in part icular  cases, but  in a wide class of ana- 
lyses it is possible to obtain (1/k)tFc(h)J which agree 
with [Fo(h)[ within narrow limits by calculating 
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t 

Fc(h) ---- ~ [ f r (h )Z  (exp( -hTBrsh)  
r = l  s = l  

× exp ( 2 ~ / -  lh~x~,))]. (11 

We shall, in this paper, assume that  a set of posi- 
tions and vibrations has been obtained which gives 
moderately good agreement between ]Fo(h)l and 
(1//c)]Fc(h)] calculated on this basis. The problem is 
to adjust the 9n+ 1 parameters pi so as to minimize 
the function M, by the method of least squares. The 
function M is chosen in preference to M1 because the 
terms IFo(h)[ given by the observations are independ- 
ent of the terms (1/k)[F,(h)] given by the parameters. 
The function (1//c)[Fc(h)t is non-linear in most of the 
parameters, and for this reason the observational 
equations are linearized in the way described by 
Whittaker & Robinson (1937). We also approximate 
to the full normal matrix, so as to reduce the number 
of matrix elements calculated, in the following way. 

For the independent parameters of x l , . . . ,  Xn, 
B1, • •., Bn the linearized and prepared observational 
equations are 

9, 0((1/k)lF,(h)i ) 
V[w(h)] 2 Apt 

i=1 0P~ 

= [/[w(h)](IFo(h)]--(1/Ic)]F~(h)[ ) . (2) 

For A(1/k) and ABi~o the observational equations are 

1/[w(h)]lF~(h)IA (l/k) + l/[w(h)] 0((1/k)[F~(h)[) AB,~o 
~B~o 

= }/[w(h)](lFo(h)l-(1/k)]F~(h)l ) . (3) 

For AB~o the observational equations are 

0((1/k)lFc(h)l) AB*o 
[/[w(h)] OU~o 

= V[w(h)]([Fo(h)[-(1/k)]F~(h)l). (4) 
We have 

O((1/k)lFc(h)])= O((1/k)lFc(h)l) 
OBiso OB*o 

= -(1/k)lFc(h)]sin 2 0(h). (5) 

Hence the formation of the normal equation for 
AB*o involves no extra arithmetic. 

The normal equations aro calculated from equa- 
tions (2) (3) and (4) in the way described by Whittaker 
& Robinson (1937). The approximation which is made 
is that  no off-diagonal matrix elements are calculated 
from equations (2) except those representing the in- 
teractions between elements of each single Xr and 
between elements of each single Br. In addition to 
the corrections to the Br derived from equations (2), 
the same isotropic correction, corresponding to 
ABiso-AB*o, is applied to every Br. This procedure 
was first suggested to one of us by V. Schomaker 
(private communication, 1954) and it appears to be 

essentially similar to that  described by Cruiekshank 
(1961). Sparks (1961) has pointed out that  this treat- 
ment of the problem corresponds to the replacement 
of the full normal matrix for the 9n + 1 independent 
parameters by a simpler positive definite matrix. 

Section 3 of this paper explains the need for this 
approximation and reproduces briefly the analysis of 
its convergence given by Sparks. Section 4 introduces 
an acceleration device and extends the analysis of 
convergence to it. Section 5 indicates the relation 
between the factors affecting the rate of convergence 
obtained and the errors to be feared in standard- 
deviation estimates. Section 6 describes tests which 
have been made to establish the effectiveness of the 
method introduced. 

3. Simple iteration 

We shall use matrix algebra in this and later sec- 
tions for brevity and to make use of results which are 
available. The detailed structure of the equations is 
thereby concealed, but it can be discovered by refer- 
ence to section 2. 

We write the linearized and prepared observational 
equations for the 9n+ 1 independent parameters in 
the form 

CAp = d .  (6) 

If we consider as a typical problem a structure 
with 20 independent atoms giving 2000 X-ray re- 
flexions, then C is a 2000 by 181 matrix, Ap is a 
column vector of order 181 and d is a column vector 
of order 2000. 

The corresponding normal equations are 

CTCAp = CTd  , ( 7 )  

o r  

A A p = b  (8) 

where we have A=CTC,  b=CTd.  The matrix A is 
square, symmetric and positive definite, and for the 
problem considered in the previous paragraph its 
order is 181. To calculate all of the unique elements 
of A involves 181 x 91 x 2000 operations and on the 
Ferranti Mercury computer which we use each of 
these would require at least 1-37 milliseconds for arith- 
metic and transfers between computing and backing 
store, giving a minimum requirement of 12-5 hours 
machine time. The time increases as the square oi 
the number of independent atoms and we run into 
great difficulty for more than 19 atoms, because we 
have not enough backing store to hold the necessary 
information. 

These considerations lead us to approximate to A 
by a simpler positive definite matrix D in the way 
described in section 2. We solve 

DAq(i)=b"),  for i=O, 1 . . . . .  (9) 

Because we have neglected off-diagonal terms in 
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forming D, Aq(°) does not agree with Ap. We there- 
fore put  

p(i+l) = p~i) + Aq(i),  (10) 

and recalculate the normal equations (or at  least 
their r ight-hand sides) for a further cycle of i terative 
refinement. The iterations are continued until  all ele- 
ments of Aq(~) are so small tha t  we are confident 
tha t  the error e(~) can be neglected in comparison with 
the s tandard deviations of the p~ resulting from the 
experimental  and other errors of the data  and the 
structure model. 

The problem is non-linear, so tha t  A, and hence 
D, changes from cycle to cycle. Lavine & Rollett  
(1956) showed tha t  the behaviour of M could be pre- 
dicted with some success by assuming tha t  these non- 
linearities could be neglected in a refinement of posi- 
tions alone, provided tha t  the positions of the atoms 
did not change by more than  0.07 A, and tha t  no h 
were used corresponding to reflecting planes of spacing 
less t han  0.7 A. Sparks (1958, 1961) opened up the 
possibility of an analysis of convergence, by pointing 
out tha t  if the variations of A can be ignored, the 
problem reduces to tha t  of solving linear equations 
by  iteration. The analysis for linear equations is well 
established (see, for example, Martin & Tee, 1961). 

If A does not change from one cycle to the next,  
we can rewrite equations (9) and (10) as 

b( i ) = b(0) - A p  (i) + Ap(0)  (11 ) 

p(i+l) _ p(~) - Aq(~) = D- lb  (~) (12) 

I t  follows tha t  

e(i+1) = (I  - D - 1 A  )e(~) . (13) 

I t  can be proved tha t  the nature of the matr ix  
D - 1 A  is such tha t  we can write 

9n+1 9n+1 
e(°) = ~" c¢~v~ = ~" e~ °) , (14) 

i=1 j=l 

where the ~ are numerical coefficients. Since, by the 
definition of a la tent  vector, D - ~ A v ~ =  ~t~v~, we have 

e~. ~+~) = ( 1 -  2i)e7), (15) 
i t  follows tha t  

9n+1 
e(=)  = . ~  ~ ( 1 - -  ~t~)~v~. (16) 

~=1 

If we represent the Euclidean length of e(u) by 

[e(m)] = (e(m)~e(~))½, (17) 

it  follows from (14) and (16) tha t  

le~)l/le~0)l __ (1_  ~)m.  (18) 

Hence all ]e~ ~)]-+0 as m-->o% if and only if all 
II-~tjl are less than  unity.  This will be true if 
0 <  ~t~<2 for all j .  

Several cycles of i teration of this kind may produce 
part ial  convergence, leaving an error which is rich in 

la tent  vectors for values of Xj near to 0 or near to 2. 
The components for ~j near to 0 are persistently 
undercorrected, and those for 2j near to 2 are persis- 
ten t ly  overcorrected. There are usually so many com- 
ponents tha t  it  is not obvious tha t  this is what is 
happening, and not easy to improve the answer by 
inspection of the shifts. 

4.  A c c e l e r a t e d  i t e r a t i o n  

If we mult iply the parameter  changes Aq(i) by a 
constant relaxation factor s(~), before adding them to 
the parameters p¢~), equations (l l) and (12) become 

b(~) = btO) - Ap(~) + Ap(°) , (19) 

p ( i + l ) -  p(~)=s(~)Aq(~)=s(~)D-lb(~) . (20) 

I t  follows tha t  
9n+1 

e(m) = 2/-/~n= 1 (1 - s(i)/~j) ~ jvj ,  (21) 
j = l  

and 
Ie}m)l/le~°) I =//~n=l (1-s(*)2j) . (22) 

We have the problem of choosing the s(f) so tha t  the 
maximum value of ]e~m)]/]e~ °)] shall be as small as 
possible for any value of ~tj which can be expected to 
occur. The range of values of ~j which we can expect 
is a mat te r  of experience rather  than  deduction, but  
i t  seems tha t  we can usually assume 0.2_< 2j_<2.0; many 
problems will give a still smaller range. This state- 
ment  is based on the frequency with which conver- 
gence does occur without  the aid of any relaxation 
factors. We expressly exclude structures with disorder 
or marked pseudo-symmetry,  and structures for which 
a majori ty  of the ]Fo] data  for reflexions accessible 
to Cu Kc¢ radiat ion have not  been collected; for these 
the spread of la tent  roots is likely to be wider. We have 
used these figures in deciding the s t ra tegy tha t  we 
have tested on the Oxford Universi ty Mercury com- 
puter, but  the analysis can be carried out without  
fixing numerical values. 

We write 
Y(/~) - / / ~ = 1  (1 -s(~)~). (23) 

We seek the m real roots of this polynomial in 
which minimize the maximum lY(A)I for all 2 in the 
range a_<).-<b, where a, b are positive. Let  us put  

z = ( ~ - a ) / ( b - a )  . (24) 

This gives 0_<z-<l for a<_~-<b. We assert tha t  the 
required polynomial is 

y(z)=amT*~(z)  , (25) 

where c o s 0 = 2 z - 1 ,  cos m O = T * ( z ) .  The function 
T~(z)  is a Chebyshev polynomial of the first  kind and, 
since i t  is equal to a cosine for all z in the range 0 to 1, 
it cannot be larger than uni ty  in modulus in this 
range, but  reaches this absolute value at  m + 1 points. 
The first three T* are given here as an illustration. 
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T * ( z ) = 2 z - 1  } 
T~(z)=8z~'-8z- t-  1 . (26) 
T*(z) = 32z a -  48z 2 -C 1 8 z -  1 

l~Iore complete lists are given by  Lanczos (1952) 
and  Clenshaw (1954). 

The roots of T*(z) are given by  

2z- -1- - - -cos~( (2 i -1) /2m) ,  i = l , 2 , . . . , m .  (27) 

The re laxa t ion  factors s(~) t h a t  we should use are the  
reciprocals of the  ;t corresponding to these z values. 
The m a x i m u m  value of [e~)l/[e~°)l t h a t  we should 
encounter  is ara and  since ]arnT*~(z)[ = 1 for t h a t  z 
which corresponds to ~ = 0 ,  we have  

a~ ~= IT*~(-a/( b - a )  )l • (28) 

This is a condensed version of the  analysis  given by  
Young (1950, 1953, 1954) on the  basis of the  sugges- 
t ions pu t  forward  by  Richardson (1910). Young pointed 
out  t h a t  the  method  is unstable  with respect  to 
rounding errors in the pa rame te r  values. We have to 
deal, however,  wi th  a re la t ively  small  range of 
values (in the  sense t h a t  our rat io  b/a is unlikely to 
be greater  t h a n  10) and we require our answers to a 
precision far  lower t h a n  t h a t  provided by  the  na tu ra l  
word length of our computer.  We have not  encountered 
a case in which the  effects of rounding errors have 
been significant, bu t  this point  should be borne in 
mind. 

Table 1. Limit ing latent root values for small errors, 
and small shifts, in a nine-cycle accelerated process 

(Errors and shifts are considered to be small if they have 
been reduced by a factor of 0.01 as compared with the errors 

of the starting approximation) 

Shifts Errors 
Relaxation - -' 

Cycle factor ~min /tmax /train ~tmax 
1 0 . 9 1  . . . .  
2 0 . 7 1  . . . .  
3 1-26 - -  - -  0.74 1-46 
4 0-60 0.69 1.46 0.71 1.76 

: 5 1-92 0.73 1.71 0.48 1.72 
6 0.53 0.39 1.72 0.46 1.96 
7 3.12 0.47 1.91 0.29 1.91 
8 0-50 0.20 1.91 0.29 2.00 
9 4.68 0.29 2.00 0.20 2.00 

The sequence of the s(i) is at our disposal. We avoid 
using large s(i) a t  an ear ly stage, to minimize depar- 
tures  f rom linearity.  We also use those s(i) which deal 
wi th  ;t values near  un i ty  f irst  and work outwards  in 
both  directions, on the  grounds t h a t  )t values near  to 
~).2 and  2.0 will f requent ly  be absent  al together.  This 
procedure minimizes the  ill effects of an initial  over- 
es t imate  of the range of +~. We have calculated the 
error  polynomials  //~ (1-s(~);t) for all stages of a 
process of this k ind  based on T* f i t ted  to the range 
0-2_<;t<2.0. At  each stage f rom the th i rd  on, there is 
a well defined range of ~t for which the  errors le(i)l 

have  been a t t e n u a t e d  by  a fac tor  of more t h a n  I00 
and  a similar (but sl ightly different) range for which 
the  shifts Aq(~) have  reached this  size. The main  
results  of this calculation are given in Table 1. We 
can therefore es t imate  the  range of values of ;t ac tua l ly  
present  in a given case by  not ing the  stage a t  which 
the  shifts become sufficiently small.  

5. S t a n d a r d - d e v i a t i o n  e s t i m a t e s  

The accelerat ion device described in section 4, with a 
sui table choice of sequence for the  re laxa t ion  factors,  
gives us a means  of es t imat ing  the  range of l a ten t  
roots of D-1A concerned. The range es t imate  obta ined 
is based on the  selection of l a ten t  vectors which make  
appreciable contr ibutions to e(0), and  this selection 
need not  include the vectors  for the  largest  and  the  
smallest  l a ten t  root. I t  is unl ikely t h a t  the  effect of 
this on the  range es t imate  will be impor t an t  when the  
number  of pa ramete rs  is large, and the accelerat ion 
device is s ta r ted  a t  an ear ly  stage. 

F rom the range of l a ten t  roots of D-1A we can de- 
termine bounds for the error  made  in es t imat ing 
s t anda rd  deviations of functions of parameters ,  be- 
cause of the  use of D -1 in place of A -1. Consider a 
funct ion 1 of the pa ramete r s  pi which is such t h a t  

61 = u16pl + u+.6p2 + . . .  + ugn+16pgn+l , ] 

or in m a t r i x  form ] (29) 

~l = u T 6 p ,  

where the  elements u~ of u are numerical  coefficients. 
The s t anda rd  deviat ion of 1 is given by  

a2(1) = uTA- lu  . (30) 
nh -- (9n+  1) 

When  we have  available D -1 only, r a the r  t h a n  A -1, 
we have to calculate the  approximat ion  

M ] (31) 
<~)(1) = uTD- lu  nh--(9n-t- 1) " 

a(1) _ JurA-lug½ (32) 
G-~) \ u ~ D - l u /  " 

Hence 

There is a theorem a t t r i bu t ed  to R. Courant  and  
E. Fischer  which Courant  & Hi lber t  (1953) give in 
the following form (see als0 B0dewig, 1956). 

Let  K be a real  symmetr ic  m a t r i x  of order n. Le t  
H be a real  symmetr ic  and positive definite m a t r i x  
of order n. Let  the la ten t  roots of H-1K be ]tl(H-1K) :> 
+~2(H-1K) > . . .  >_ 2n(H-1K). Let  qs be a r b i t r a r y  vec- 
tors. Then 

[ 2r(H-1K) = min max  \ x T H x / j  , (33) 
qs L x 

where x satisfies r - 1  conditions q ~ x = 0 ,  s = l ,  
2 , . . . , r - 1 .  

Here  both A and D are symmetr ic  and  posit ive 
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definite and we can set K = A  -i, H = D  -1, x = u .  We 
then get two special cases of Courant's theorem, 

1 = max (urA- iu l  = m~x (a2(1) ~ / 
29n+i(D-iA) u \urD- iu /  \a~(1)] 

1 _ rain (urA-iu~ -- m/in/o2(1)~ / (34) 
2i(D-iA) U \ uTD-iu/ \~D(1)] 

The sizes that  these ratios are likely to reach are 
indicated by the work of Sparks (1961) on this ap- 
proximation for anthracene. There he found 2i(D-iA) 
=1.9, 29n+i(D-iA)=0.3, so tha t  we can deduce that  
0.72 _< (r(1)/(rz)(1) <_ 1-8. Notice that  aD will always be 
smaller than a for a single parameter p,, but may be 
either smaller or greater than a for a combination of 
parameters. Anthraceue appears to be a worse-con- 
ditioned problem than most structures of similar size 
that  we have encountered, but  comparable to some 
larger structures. 

The results of this section can be used independently 
of the acceleration device we propose. I t  is seldom 
convenient to print  out from a computer, still less to 
publish, the complete matr ix  A -i  when it has been 
computed. We may therefore need to estimate the 
standard deviation of a combination of parameters, 
when we are given only the diagonal elements of A -1, 
which are frequently all tha t  are published. In these 
circumstances we may make an error which can be 
assessed if the extreme latent  roots of the appropriate 
quotient matr ix  are known. This matr ix  is DiA -i, 
where for this purpose each diagonal element of D~ is 
equal to the reciprocal of the corresponding diagonal 
element of A -i, and all off-diagonal elements of Di 
are zero. 

We can show that  the latent roots of DA -i are the 
same as those of LTA-iL,  where D = LL T, provided D 
is positive definite. Since LrA- IL  is symmetric, this  
may provide a more convenient means of obtaining 
the required latent  roots. It  may be useful to point 
out that,  for the diagonal D1 described in the previous 
paragraph, LTA-iL is the symmetric  matr ix  obtained 
by scaling the rows and columns of A -1 so that  every 
diagonal element becomes unity. The matr ix  A -1 is 
known as the variance matr ix  of the parameters, and 
LTA-iL as their correlation matrix.  

6. Tes t s  of the method  

The arguments of sections 3 and 4 cannot be applied 
rigorously to crystal-structure refinement, because 
the equations concerned are not t ru ly  linear. There is 
also the objection that  rounding errors in the param- 
eter values will be magnified if large relaxation fac- 
tors are used. We have tested the method suggested 
on several structures and have always found it to 
produce satisfactory convergence; usually other work 
had already reduced the errors of the first approxi- 
mation so much that  only two or three cycles were 

needed to provide sufficient convergence. In these 
circumstances the results are of li t t le interest from 
the point of view of assessing this method, and we 
restrict the discussion here to three cases in which 
points of interest emerged. 

Table 2. Maximum positional parameter shifts in a 
refinement of a mixed alkali salt of glucose-l-phospate. 

Largest Largest 
Relaxation indicated applied 

Cycle factor shift shift 

1 0.91 0.078 A 0.071 A 
2 0.71 0.038 0.027 
3 1.26 0.018 0.023 
4 0.60 0.012 0-0074 
5 1-92 0.011 0-021 
6 0"53 0.0087 0"0046 
7 3" 12 0.0001 0.0004 

We have taken part  in the analysis of two alkali- 
metal  salts of glucose-l-phosphate (in collaboration 
with I. H. Riley and R. W. H. Small of the University 
of Birmingham). These have symmetry  P21212 and 
one crystal has 24 independent atoms other than 
hydrogen atoms. Because of disorder, two of these 
represent partial  occupation by differing alkali-metal 
ions of sites 0.9 ik apart. Even so, it was possible to 
obtain excellent convergence with seven cycles of a 
T* process for the range 0.2___2___2-0 and the progress 
of the positional refinement is summarized in Table 2. 
Inspection of the shifts in cycles 5 and 6 indicated 
that  both of these cycles were necessary and gave the 
estimates 0"70_> 29n+i >_0"50 and 1.95 > 21>_1.75. We 
deduce that  1.3 + 0.1_> a/aD>_0.74 +_ 0.02. The estimate 
of 21 suggests that  cycle 7 of a process with unit  shifts 
would have given max (6x)=0.009 ~ as against 
0.0001 /~ here. Because of the t ime required on the 
machine, we have not checked this directly. The first  
cycle required 2 hr 40 min and each other cycle 
2 hr 20 min, since D was not recalculated. The total 
t ime was 16 hr 40 min and we estimate that  to cal- 
culate one set of structure factors and derivatives, to 
form the full matr ix  of the normal equations and to 
solve the equations, would take approximately 15½ 
hr, if we had sufficient backing store to contain the 
217 x 109 independent elements of the full matrix.  
There is l i t t le difference in speed between the two 
methods, but the block-diagonal approximation has 
decided advantages, for a problem of this size, in 
allowing the time to be split into short runs. The size 
of problem for which this matters clearly increases 
with the speed of the computer used. 

The structure of potassium benzyl penicillin (Crow- 
foot, Bunn, Rogers-Low & Turner Jones, 1949; Pitt ,  
1952), which we have been refining in collaboration 
with other workers in Oxford, presents the problem 
that  certain atoms in the benzene ring vibrate far 
more than  the others. I t  was pointed out by Dunitz & 
Rollett  (1956) that  in such a situation least-squares 
refinement is likely to be slow and tha t  the standard 
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Table  3. Maximum positional parameter shifts in a 
refinement of potassium benzyl penicillin 

Largest Largest 
Relaxation indicated applied 

Cycle factor shift shift 

1 0.69 0.026 A 0.018 A 
2 0-58 0.084 0.049 
3 1.79 0-017 0.031 
4 1.00 0.018 0.018 
5 0.50 0.024 0-012 
6 1.00 0.0033 0.0033 

devia t ion est imates  derived from D -1 m a y  not be 
realistic. In  the case of potassium benzyl  penici l l in 
there was a previous his tory of ref inement  wi thout  
re laxat ion factors which suggested tha t  thcre wcrc 
probably  no la tent  roots outside the range 0.25 to 
1-75. A T* process was f i t ted  to this  range, to give an 
error a t t enua t ion  of a factor of 26. I t  turned out tha t  
the  shifts on which these decisions were based were 
much  smaller  t han  the errors of the input  parameters  
and  tha t  the upper  l imi t  of 1.75 had  been set too low. 
This was corrected by adding a cycle with a re laxat ion 
factor of 0.5 after  the fourth cycle of the process, but  
i t  would have been more efficient to have made a 
generous es t imate  of the range of la ten t  roots in the 
f i rs t  place. The progress of this  ref inement  is sum- 
mar ized  in  Table 3, from which i t  can be seen tha t  the 
expected a t tenuat ion  factor of 26 represents the ratio 
between the shifts of cycles 2 and 6 reasonably well. 
The shifts are at  this  stage so small  t ha t  we do not 
feel t ha t  fur ther  ref inement  will  al ter  the structure 
mater ia l ly ,  a l though i t  might  reveal the size of 
/ t ( 9n+ l )  and  so establish the correction required for 
the s tandard-devia t ion  estimates.  

Table 4. Maximum positional parameter shifts in a 
refinement of aneurin monophosphate dichloride di- 

hydrate 
Largest Largest 

Relaxation indicated applied 
Cycle factor shift shift 

1 0.91 0.035 A 0-032 A 
2 0.71 0.019 0.014 
3 1.26 0-0069 0.0087 
4 0.59 0.0041 0.0024 
5 1.91 0.0028 0-0054 
6 0.53 0.0011 0.0006 
7 3'12 0'0009 0'0028 
8 0-50 0.0008 0.0004 
9 0-91 0.0008 0-0007 

10 1.00 0-0002 0.0002 

The crystal  s tructure of aneur in  monophosphate  
d ihydra te  dichloride will be described ful ly  elsewhere. 
I t  is tr icl inic (Pi )  with 26 independent  atoms other 
t han  hydrogen. Although the structure had  a l ready 
been refined by other means, i t  was used to invest igate 
the acceleration device, s tar t ing from an ear ly  set of 
parameters  so as to provide a searching test. The 
progress of the ref inement  is shown in Table 4. The 

expected behaviour  was found for the  posit ional  
shifts up to cycle 7, bu t  the m a x i m u m  indicated shift  
did not  decrease in the expected way  at  cycle 8. The 
rat io between the m a x i m a  for cycles 1 and 8 was in  
fact  only 44 ins tead of 160. The reason for this  rela- 
t ive ly  poor performance appeared to lie wi th  the first  
approximat ion  used. Al though the errors of the posi- 
t ional  parameters  were quite small ,  those of the vi- 
bra t ional  parameters  were in i t i a l ly  very  large. The 
first  cycle doubled the v ibra t ion  parameters  for sev- 
eral atoms, reducing their  contr ibutions to Fc by  a 
factor of 2 for high-order reflexions. The assumpt ion  
tha t  A was approx imate ly  constant  was clearly only 
val id  from cycle 2 on, and  the posit ion was retr ieved 
by  repeat ing the re laxat ion factor of 0.91. The fol- 
lowing cycle then  produced indicated shifts of 0.0002 
/~, less t han  1/160 of the indicated shifts for the 
s tar t ing parameters .  The first  six of the ten cycles 
carried out would have been quite sufficient to 
provide parameters  differing from the f inal  values by  
insignif icant  quanti t ies .  To have stopped at  tha t  
point  would, however, have left  doubt  about  the range 
of l a ten t  roots present  and would have been uncon- 
vincing as a demonst ra t ion  tha t  the designed error 
reduct ion could be achieved. 

There have recent ly  been publ ished s ta tements  to 
the effect t ha t  a block-diagonal approximat ion  can 
converge to a solution which differs from tha t  given 
by  a fu l l -matr ix  analysis.  This cannot be so if the  
following conditions are satisfied, 

(a) The same weighting scheme is used for both. 
(b) Both ref inements  are pursued unt i l  the  shifts 

are negligible compared with the parameter  
s tandard  deviations.  

(c) The minimiza t ion  funct ion corresponding to the  
weighting scheme has one m i n i m u m  only, close 
to the  s tar t ing approximation.  

Regardless of the mat r ix  approximation,  the param- 
eter changes indica ted  by  a set of normal  equat ions 
cannot al l  be zero unless the r igh t -hand  sides of the 
equations are al l  zero. Each r ight -hand side represents  
the der ivat ive  of the min imiza t ion  funct ion wi th  re- 
spect to one of the parameters  at  the posit ion of the  
input  parameters  for the cycle, and the set of deriva- 
t ives cannot all  be zero except at  a s ta t ionary  value of 
the minimiza t ion  function. Since the r i~ht -hand sides 
for the block diagonal  and  fu l l -mat r ix  methods are 
the same, the f inal  parameters  mus t  also be the same, 
provided tha t  the conditions s ta ted  here are satisfied. 

Trot ter  (1961) a t t r ibu ted  unexpected bond length  
values to the inadequacy  of the block-diagonal ap- 
proximat ion  which he used. The parameter  changes 
in the f inal  cycle were up to 0.01 /~ in  size, equal  to 
the parameter  s tandard  deviations.  Robertson, Shearer,  
Sim & Watson  (1962) have publ ished results  of a 
block-diagonal ref inement  and a fu l l -matr ix  refine- 
ment  for the disordered s tructure of azulene. The 
results differ, bu t  unfor tuna te ly  the two weighting 
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schemes were also different.  We have found tha t  a 
change of weighting scheme can al ter  bond-length 
values by  0.02 A in a s t ructure  analysis  not  affected 
b y  disorder. I t  is h a r d l y  surprising tha t  somewhat  
larger differences were found in  this  case. We should 
point  out t ha t  the size of shif t  which can be neglected 
depends on the size of the smallest  l a ten t  root of 
D-1A, for the block-diagonal  approximat ion,  and  this  
can be expected to be unusua l ly  small  if a tomic sites 
overlap because of disorder. For the azulene analysis  
the  sizes of the f inal  shifts were not  stated.  

Our ma in  conclusion is t ha t  the block-diagonal  
approximat ion  is a sat isfactory subst i tu te  for full- 
ma t r i x  analysis  in  normal  cases, bu t  only provided 
tha t  due care is exercised. The need for such care, and  
a desire for more precise es t imates  of error, are our 
ma in  reasons for preferring the fu l l -matr ix  method  if 
a computer  of sufficient size and  speed is available.  

We wish to acknowledge a main tenance  grant  from 
the Depar tmen t  of Scientific and Indus t r i a l  Research 
which enabled  one of us (L. I. H.) to take  par t  in 
th i s  work. 
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Variation with Temperature  of the Elastic Compliances  of Corundum 
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The elastic compliances of a natural  corundum are determined by the composite piezo-electric 
oscillator method. The variation of these six compliances with temperature has also been studied 
in the temperature range 0 to 300 °C. All the compliances increase with temperature, though the 
variations do not follow a linear law. 

Introduction 

Corundum, A1203, one of the impor tan t  na tu ra l ly  
occurring crystals,  has indus t r ia l  value as an abrasive 
since its hardness is next  to tha t  of diamond.  I t  belongs 
to the 'hemat i te  group',  R208, crystall izing in the 
rhombohedra l  class. The crystals are usual ly  rough 
and round, the (0001) plane being perfect and the 
(1150) plane less dist inct .  Due to twinning,  the (1011) 
plane is also prominent .  

As this crystal  belongs to the Dsa class of the 
tr igonal  system, its elastic behaviour  is defined by  
6 independent  elastic compliances, Sn ,  $33, $44, Sle, $13 

and $14. These have been de termined by  Sunder Rao 
(1949), using a synthet ic  specimen. Bhimasenachar  
(1949, 1950) has de termined these constants  using a 
na tu ra l ly  occurring crystal,  employing the wedge 
method. A s imilar  de terminat ion  has been made  by  
Mayer & Hiedemann  (1958) for synthet ic  sapphire. 
Very recent ly  W a c h t m a n  and  others (1960) have 
redetermined the elastic constants by  a resonance 
method,  using synthet ic  specimens. In  the present 
investigation,  the elastic compliances of a na tu ra l  
crystal  are determined at room tempera ture  and also 
their  var ia t ion  wi th  tempera ture  between 0 and  
300 °C. 


